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PASSIVELY DAMPED LAMINATED PIEZOELECTRIC SHELL
STRUCTURES WITH INTEGRATED ELECTRIC NETWORKS

Dimitris A. Saravanos*

Ohio Aerospace Institute
22800 Cedar Point Road
Cleveland, Ohio 44142

SUMMARY

Multifield mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive
electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive
electric networks are directly formulated and solved using a finite element methodology. The modal damping and
frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results
are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic
patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezo-
electric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of
modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on
piezoelectric damping.

INTRODUCTION

The continuous requirements imposed on many new structural applications for improved vibroacoustic response
and weight reduction mandate the development of new damping concepts. Embedded piezoelectric layers introduce
the unique capability to convert strain energy to electric energy during a vibration cycle and vice-versa. By connect-
ing passive electric networks of resistors and capacitors to the piezoelectric layers, a fraction of electric energy may
be dissipated or spontaneously stored, thus increasing the damping and changing the natural frequencies of the struc-
ture. Compared to other techniques which typically introduce high damping, for example, the constrained
interlaminar viscoelastic layer and active damping techniques, the passive piezoelectric damping may exhibit very
desirable characteristics, such as: capability to be modified, spontaneously or periodically, by varying the properties
of the passive electric elements (resistors, capacitors, etc.); damping improvement may not decrease laminate stiff-
ness, as is the case with viscoelastic damping layers; and the required hardware is minimal and may be even encap-
sulated into the laminate, thus adding minimal weight to the structure. Consequently, the approach may be very
suitable for damping vibrations in rotating or moving components, such as turbomachinery blades, helicopter blades,
and so forth.

While substantial work has been reported in the area of active vibration control as described in recent reviews
(refs. 1 to 2), most of the reported work on passive piezoelectric damping has been limited to simple laminate and
structural (mostly beam and plate) configurations. Hagood and Von Flotow (ref. 3) first studied analytically and
experimentally the use of passive piezoelectric elements to dampen beam structures. Law et al. (ref. 4) have reported
simplified models and experimental results for piezoelectric materials shunted by a load resistor. Davis and
Lesieutre (ref. 5) predicted the passive damping of beams with resistively shunted piezoelectric patches based on the
strain energy dissipation approach, and reported experimental results. Koshigoe and Murdock (ref. 6) reported a
simplified analytical formulation for plates with passive piezoelectric elements. Wang et al. (ref. 7) have reported
work on a semi-active vibration control approach for beams with piezoelectric elements combining passive electric
components with an active controller concept. Yarlagadda et al. (ref. 8) presented micromechanics and experimental
results for composites with resistively shunted piezoceramic fibers. Saravanos (ref. 9) developed an exact in-plane
Ritz formulation for the prediction of damping in composite plates with resistively shunted piezoelectric elements.

*Senior Research Associate.
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While the reported work has provided valuable insight regarding the potential of passive piezoelectric damping,
development of efficient methodologies enabling the prediction of damping in realistic laminate and structural con-
figurations is still required. This paper presents multi-field mechanics for curvilinear composite laminates with
piezoelectric layers having distributed passive electric components embedded or attached to the piezoelectric layers,
and an associated shell finite element for predicting the modal damping, modal frequencies and dynamic response of
damped piezoelectric shells. The laminate mechanics combine single-layer kinematic assumptions for the displace-
ments with a layerwise variation of the electric potential. The formulation directly considers the presence of distrib-
uted electric networks, thus enabling coupled and efficient representations of the integrated laminate-electric circuit
system. Governing equations of motion are developed and solved in state-space form. The poles of the coupled
structural system are calculated and used to evaluate the modal damping and frequencies of the shell structure. The
frequency response of the damped structure is also directly calculated from the equations of motion.

DOUBLY CURVED PIEZOLAMINATES WITH PASSIVE ELECTRIC NETWORKS

The curvilinear laminate configuration with attached distributed electric components and piezoelectric actuators
is shown schematically in figure 1(a). It is assumed that each ply of the laminate remains parallel to a reference cur-
vilinear surface Ao which is defined with respect to a global Cartesian coordinate system Oxyz. An orthogonal curvi-
linear coordinate system Oξηζ is defined, such that the axes ξ and η lie on the curvilinear reference surface Ao,
while the axis ζ remains straight and perpendicular to the layers of the laminate. A series of resistor-capacitor cir-
cuits may be connected to piezoelectric layers.

Governing material equations.—Each ply is assumed to be a linear piezoelectric material with properties
defined on the orthogonal curvilinear system Oξηζ , and constitutive equations of the following form,
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where: i,j = 1,...,6 and k,l = 1,...,3; σi and Si are the mechanical stresses and engineering strains in vectorial notation;
Ek is the electric field vector; Dl is the electric displacement vector; Cij  is the elastic compliance and stiffness ten-
sors; elj  is the piezoelectric tensor; and εlk is the electric permittivity tensor of the material. Superscripts E and S
indicate constant electric field and strain conditions, respectively. The axes 1, 2, and 3 of the material are parallel to
the curvilinear axes ξ, η, and ζ. The materials are assumed to be monoclinic class 2 crystals with a diad axis (polar-
ization direction) parallel to the ζ axis. The tensorial strain Sij  and electric field components in a curvilinear coordi-
nate system are related to the displacements and electric potential. The strain-displacement relationships and the
relation of the electric field vector Ek to the electric potential φ are provided in reference 10.

Laminate theory.—The mixed-field laminate theory (ref. 10) is extended here to address the case of piezoelec-
tric laminates with distributed electric circuitry (fig. 1(b)). The theory combines linear displacement fields through
the thickness of the laminate for the displacements u, v (along the ξ and η axes respectively) with a layerwise elec-
tric potential field through the laminate, consisting of N discrete continuous segments (fig. 1(c)). By assuming dif-
ferent approximations for each field, the method retains efficiency for thin and intermediate thick laminates, while
the representation of multiple fields and piezoelectric coupling is maintained. The discrete layer assumption effec-
tively subdivides the laminate into N-1 sublaminates (or discrete-layers). The grade of subdivision can be arbitrarily
controlled according to the configuration of the piezoelectric layers and/or the required detail of approximation. A
continuous electric potential is assumed in each sublaminate, such that a Co continuous variation results through the
thickness of the laminate. The displacements and electric potential take the following form,
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where uo, vo, wo are displacements along the ξ, η and ζ axes, respectively, on the reference surface Ao; superscript j
indicates the points ξj at the beginning and end of each discrete layer; φj is the electric potential at each point ζj (see
fig. 1(c)); Ψj (z) are interpolation functions; and βξ, βη are the rotation angles,
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where Ri are the local radii of curvature (fig. 1(a)); go
11, g

o
22 are the components of the metric tensor for the reference

surface.
Equations of motion.—The variational statement of the equations of motion for a piezoelectric laminate with

assumed displacement and electric potential fields takes the form (ref. 10):
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where Ao is the curvilinear reference surface, τ and D overbar are the surface tractions and electric displacement
acting respectively on boundary surfaces Γτ, Γφ; δHL and δTL are the variations of the electric enthalpy and kinetic
energy of the laminate, defined as,
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and h is the laminate thickness. The electric enthalpy of the piezoelectric laminate is a quadratic expression of the
generalized strain/electric field and the generalized laminate matrices (ref. 10),
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In the above equation, [A], [B], and [D] are the stiffness matrices of the curvilinear laminate, [Em] overbar and
overhat are the piezoelectric matrices, and [Gmn] are the laminate matrices of electric permittivity. L is the number
of plies in the laminate. The kinetic energy of the laminate takes the form,
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where uo
i = {uo,vo,wo} and βi ={βξ, βη}; ρA, ρB, ρD are the generalized densities, expressing the mass, mass coupling

and rotational inertia per unit area, respectively, of the laminate.
Electric circuitry.—Considering that a passive electric circuit with resistive and capacitive elements is inter-

faced to the terminal surfaces m and n (see fig. 1(b)) of the piezoelectric laminate, the electric potential f and electric
flux φ in the circuit are related as follows,
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where r–1 and c are the inverse resistance and capacity per unit area of the laminate. Considering the more general
case of multiple passive networks attached at various thickness locations, the equilibrium equations are expressed in
similar matrix form,

J t c t r tp p p( ) [ ] ˙ ( ) ( ) ( ){ } = { } + [ ]{ }−φ φ1 9

where p indicates passive circuits and the specific capacitance and resistance matrices are formulated in accordance
with equation (8) and include contributions of all laminate circuits.

Compatibility conditions.—At the j common terminal between the piezoelectric laminate and the electric cir-
cuit, the electric potential at the laminate should be equal to the electric potential of the circuit, and the electric flux
in the electric circuit should be equal to the rate of the generalized normal electric displacement.
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where subscripts L and p indicate the laminate and passive circuit respectively.

PASSIVE PIEZOELECTRIC SHELL STRUCTURES

A finite element based method is developed using the previous laminate mechanics for predicting the dynamic
characteristics and response of shell structures having piezoelectric layers or patches attached to passive electric
circuits. The FEM uses approximations of the generalized electromechanical state (displacements, rotation angles
and electric potential) on the reference surface Ao, of the following type,
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where superscript i indicates the reference surface displacement, rotation angle and generalized electric potential
components corresponding to the i-th in-plane interpolation function Ni(ξ,η). An 8-node quadrilateral curvilinear
element was considered in this work. Selective reduced integration is used for the calculation of shear and piezoelec-
tric stiffness terms to overcome spurious stiffening observed at low thicknesses. Substituting into the generalized
equations of motion (4), and collecting the coefficients as mandated by equations (6) and (7), the governing dynamic
equations of the structure and the distributed electric circuitry are expressed in discrete matrix forms.

Piezoelectric structure.—Considering an active-passive piezoelectric structure containing piezoelectric layers
connected to passive circuitry and piezoelectric actuators, the electric potential vector can be subdivided in a passive
component φp representing the electric potential at passive piezoelectric layers, and an active component φA repre-
senting the potential imposed on the actuator nodes, such that {φ} = { φp; φA}. The partitioned system takes the form,
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with Ns unknown displacements {u}, and Np unknown electric potentials {φP}. The presence of continuous elec-
trodes is considered in the previous equation by imposing equality constraints on the nodal electric potential of the
electrode surface by means of the penalty method.
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Electric circuitry.—The applied electric displacement term in equation (4) can be rewritten considering the sec-
ond compatibility equation (10),

δφ δφ
φ φ

˙   ( )D Jd dΓ Γ
Γ Γ
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Combination of equation (13) with equation (9) and application of the layerwise and finite element approximation of
electric potential yields the discretized compatibility equation for the electric flux between the piezoelectric layers
and passive electric circuitry
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where QP, IP are the electric charge and current, respectively, at the interface nodes. [C] and [R–1] are the capaci-
tance and inverse resistance submatrices of the distributed electric system, between nodes i, j of the finite element,
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Combined structural system.—Combining the equations of motion for the piezoelectric shell (ref. 12) with the
compatibility equation (14) for the distributed electric system, the governing equations of the combined system re-
sult in state space form. The left-hand side includes the unknown electromechanical state {V; U; Φp} which contains
the velocities, displacements, the electric potential at the common terminals of the passive piezoelectric layers. The
right-hand side includes the excitation of the plate in terms of mechanical loads and applied voltages on the actua-
tors:

M

I

K C

V

U

K K

I

K R

V

U
uu

PP p

uu u
PP

u
PP p

[ ]

[ ] −



















{ }
{ }

{ }



















=
−[ ] −[ ]

−[ ] [ ]



















{ }
{ }

{ }







−

0 0

0 0

0 0

0

0 0

0 1
φφ

φ

φ[ ]

˙

˙

Φ̇ Φ










+
− [ ]{ }

















{ ( )}

( )

F t Ku
PA A
φ Φ

0

0

16

The capacitance [C] of the electric circuit is added to the internal capacitance of the passive piezoelectric layers. The
electric resistance appears to be the only damping mechanism, since no other sources of damping are considered in
the present study. This dynamic system is solved to provide either the free vibration, or the frequency response of
the damped structure.

Modal characteristics.—Assuming free vibration conditions with state variables of the form {U(t), V(t), ΦP(t)}
= {U, V, ΦP(t)}est, 2Ns + Np complex eigenvalues (poles) are calculated from equation (16). The 2Ns poles are con-
jugate complex pairs sk* corresponding to the vibration modes. The remaining Np eigenvalues are negative real
numbers corresponding to time constants of the electric circuitry. The modal frequency and damping ratio of the
structural modes is directly calculated from the poles,

ω ζ ωk k k k ks s= = ( )* *,      Re ( )17

Frequency response.—Assuming harmonic state variables {U(t), V(t), ΦP(t)} = { U, V, ΦP}ejωt, force Fejωt and
applied electric potential ΦAejωt, equation (16) provides a linear system of equations with complex coefficients.
Solution of the system yields the response {U, V, ΦP} of the structure at frequency ω.
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CASE STUDIES

Various numerical studies were performed in order to evaluate the accuracy and convergence of the developed
formulation, including: (1) comparisons with measured damping and frequency data of composite beams with an
attached piezoceramic-resistor patch, and (2) convergence studies towards exact Ritz in-plane solutions for specialty
plates and cylindrical panels with distributed piezoelectric-resistor layers. The piezoelectric damping of clamped-
free cylindrical composite blades with discrete piezoelectric-resistor patches was also investigated.

Materials and assumptions.—The properties of all materials are shown in table I. The T300/934 Graphite/epoxy
composite was used for all composite laminates in this work. Composite beam specimens of this material were also
fabricated and tested. A PZT-4 piezoceramic was considered in all numerical examples. PZT-4 patches provided by
American Piezoceramics International (material APC 840) were used in the fabrication of the beam specimens.

[04/904]s Cantilever beam.—A [04/904]s T300/934 Graphite/Epoxy beam, 234 mm long and 25.4 mm wide,
with a surface epoxied PZT-4 patch having a variable resistor attached on its surface terminals was fabricated and
tested. The beam was supported in cantilever configuration, and the modal characteristics were measured and also
predicted using the developed shell finite element. Figure 2 shows the geometry and testing configuration of the
beam. The direction of fibers in the 0° plies was parallel to the beam axis, the thickness of each composite ply was
0.262 mm, while the thickness of the piezoceramic patch was 0.762 mm. The size of the piezoceramic patch was
50.8 by 25.4 mm, and the lower electrode was wrapped around the free-edge and covered 2 mm of the upper surface
to provide space for wiring (see fig. 2).

The beam was impacted with an instrumented hammer and the acceleration was measured using a 0.50 gr
accelerometer, at the location shown in figure 2. The electric signals from the impact hammer and accelerometer
were acquired and digitized using a PC based dynamic data acquisition card and software. The frequency response
functions were calculated from the impact response data using FFT software. The poles of the beam were subse-
quently estimated using the method of complex exponentials. A model transfer function consisting of a series of
conjugate pairs of complex exponential terms (each pair corresponding to a mode) was correlated to the measured
frequency response function until the least-squares error was minimized. The modal frequency and damping were
subsequently calculated from the poles of the model system and they were assumed to approximate closely the
modal damping and frequency values of the tested beam. After each measurement, the resistance was varied and
measured, and the test was repeated.

The measured damping increment and natural frequency of the first mode of the beam for various resistance
values are shown in figures 3 and 4. The damping increment was calculated from the measured damping at resis-
tance R by substracting the measured damping at open circuit conditions (R = ∞) which was considered to represent
the baseline damping of the beam. The same figures also show the predicted values using a 14×1 nonuniform mesh
of the shell finite element. The presence of continuous electrodes was also modeled. The mass of the accelerometer
was found to affect the dynamics of the beam and was included into the finite element model. Both measured and
predicted damping and frequency values follow the same trends and are within reasonable agreement. The finite
element predictions seem to overestimate the measured data. The lower measured values are attributed to the pres-
ence and compliance of the adhesive layer (whereas the present formulation assumes a perfect bond) and possible
degradation of the actual piezoelectric coefficients than the ones provided by the manufacturer and used in the
model.

Figures 3 and 4 illustrate that there is an optimal resistance where damping reaches a maximum and frequency
shifts to a higher value. Beyond this optimal resistance value, the resistor and the capacitance of the piezoelectric
layer effectively form a low-pass filter on the electric current flowing through the resistor. The cut-off frequency is
related to the resistance and capacitance of the piezoelectric layers. When the cut-off frequency exceeds the fre-
quency of a specific vibration mode, the electric flux through the resistor decreases and a fraction of electric flux is
stored in the piezoelectric capacitor during a vibration cycle. This decreases the dissipation of electric energy at the
resistor, and thus lowers the damping. As the bulk of electric energy remains stored in the piezoelectric capacitor,
the elastic strain energy of the beam is reduced resulting in higher natural frequencies.

Simply supported plate.—A simply supported [p/0/90/90/0/p] cross-ply Graphite/Epoxy composite square plate
is considered, with surface attached distributed piezoceramic (PZT-4) layers grounded at the inner surface and each
shunted with equal distributed resistance per unit area r. The nominal thickness of each composite ply was
tl = 0.375 mm and of each piezoelectric layer was tp = 0.250 mm, thus, resulting in total plate thickness h = 2 mm.



7NASA/CR—1999-208871

The free length of the plate along the x and y axes was Lx/h = Ly/h = 157. Considering the two planes of symmetry,
only a quarter of the plate was modeled using a uniform mesh. Figure 5 shows the damping and natural frequency
predictions of the fundamental mode using various mesh densities, together with an exact in-plane Ritz solution
based on the same laminate assumptions (ref. 9). Both damping and natural frequency predictions converge rapidly
to the exact in-plane solution. As in the previous example, there is an optimal resistance where damping reaches a
maximum and frequency shifts to a higher value. Figure 6 shows the damping of additional modes evaluated using a
6×6 uniform mesh. Besides the good agreement between the FE and exact solution, the results show that as the
modal frequency increases the corresponding damping peak occurs at lower resistance.

Simply-supported cylindrical panel.—The simply supported cylindrical quarter panel shown in figure 7 is con-
sidered. The panel has identical Gr/Epoxy [p/0/90]s laminate configuration, ply thicknesses and materials with the
previous case, with the 0° plies aligned along the hoop direction. Each PZT-4 layer is shunted with a distributed
resistance per unit area r. The length of the panel along the hoop (ξ) and axial (η) axes is Lξ/h = Lη/h = 157. Taking
into consideration the symmetry in axial direction, only one-half of the panel was modeled using a uniform mesh.

Figure 8 shows the damping and frequency of the first mode which in this case is mode (3,1). The numbers in
parenthesis indicate the wavelengths along the hoop (ξ) and axial (η) direction. Both damping and frequency predic-
tions seem to rapidly converge towards an exact in-plane solution, although higher element subdivisions are required
along the circumferential direction. Figure 9 shows the predicted damping and frequency corresponding to mode
shape (1,1) which occurs at a higher natural frequency, as a result of stiffening from extension-bending coupling
introduced by the curvature. The finite element predictions seem to converge to slightly different values from the
Ritz solution. Figure 10 shows damping predictions for the first 5 modes, and the very good overall agreement
between a 16×4 FE mesh and an in-plane exact Ritz method developed by the author. All modes illustrate the famil-
iar pattern of a maximum damping peak and shifting in the natural frequency with increasing resistance values.
However, the prevailing difference with the previous plate case is the wide variation between the damping peaks of
the various modes, with modes (1,1) and (3,1) having the lower and higher damping peak, respectively. Curvature
induced extension-flexure coupling seems to adversely affect the damping effectiveness of the piezoelectric layers,
as it reduces the flexural strain-energy stored and dissipated at the piezoelectric layers. Overall, the present and pre-
vious cases have demonstrated the accuracy and convergence rate of the developed approach.

CANTILEVER CYLINDRICAL PANEL WITH PIEZOELECTRIC PATCHES

The more realistic case of a [0/90/45/-45]s Graphite/Epoxy cylindrical quarter-panel having curved PZT-4
patches symmetrically attached on both sides was also considered (fig. 11). The 0° plies are parallel to the x axis.
The thicknesses of each composite ply and PZT-4 patch are 0.375 and 0.500 mm, respectively, and the length aspect
ratio was Lξ/Lη = 2, Lη = 140 mm. The panel was clamped at the lower curved edge and free at all others, to
resemble an untwisted cylindrical blade. The location of piezoelectric patches (shaded area) on each side and the
finite element mesh are shown in figure 11. The surface terminals of each piezoceramic patch were assumed to be
connected to an individual resistor, however, the values of the resistors were selected such that the specific resis-
tance remained the same for all piezoceramic patches. The continuous electrodes were modeled using penalty equal-
ity constraints on the surface electric potential.

The predicted modal damping of the first five modes is shown in figure 12. Again the damping variation of each
mode follows the familiar peak pattern as the resistance increases, yet the modal damping varies widely between
various modes. Because of the finite size and continuous electrodes of the piezoelectric patches, their location and
size become important parameters in connection with the respective mode shape. The present configuration seems to
be more effective with flexural modes (modes 2, 4 and 5) while provides minimal damping for twisting modes
(1 and 3). The lower damping values, compared to previous cases of idealized distributed piezoelectric layers, are
attributed to the partial coverage of the surface by piezoelectric patches and the averaging of electric potential occur-
ring on each piezoceramic due to the finite size of their continuous electrodes. Besides demonstrating the extreme
capabilities of the developed methodology, the results show that the technique may yield substantial damping
increases for select modes, provided that the shunting resistance, size, and location of the piezoelectric layers is
properly designed. The value of the developed mechanics and finite element method in accomplishing such design
tasks is apparent.
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CONCLUSION REMARKS

A formulation was described for predicting the damped dynamic characteristics of laminated composite shell
structures with piezoelectric layers connected to distributed passive electric networks. The formulation includes
multifield mechanics for curvilinear piezoelectric laminates having distributed passive electric components. Finite
element based mechanics and an 8-node specialty shell element for predicting the modal damping, modal frequen-
cies and damped response of piezoelectric shells were also formulated and encoded into research software.

Experimental and numerical studies illustrated the quality of the formulation and quantified the concept of pas-
sive piezoelectric damping on various structural configurations. The modal damping and frequencies of a composite
beam with a variable resistor-piezoceramic element were measured and correlated with predicted results. Additional
correlations with exact in-plane solutions for plates and shells illustrated the fast convergence of the developed finite
element. The modal damping and frequency of cylindrical composite blades with resistively shunted curved piezo-
electric patches were also predicted. All analytical and experimental studies have shown that regardless of the struc-
tural configuration: (i) the concept of passive piezoelectric damping is feasible, and (ii) the damping can be easily
tuned by changing the resistance value and reaches a peak at a specific resistance value which differs for each node.
The shape of the structure seems to drastically affect the maximum damping value of each mode, with curvature
effects being predominant. The finite size and location of piezoelectric elements also seem to affect the damping of
each mode. Application of the technique on complex structural configurations may require careful design consider-
ations. Overall, the results have illustrated the validity and effectiveness of the developed finite element formulation
for analyzing and designing passively damped piezoelectric structures.
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Figure 1.—Curvilinear piezoelectric laminate with embedded passive electric networks. (a) Geometry,
   (b) through-thickness configuration, (c) assumed fields for electric potential and in-plane displacements

TABLE I.—MECHANICAL PROPERTIES
(εo  = 8.85 10-12 farad/m, electric permittivity of air)

Composite T300/934 PZT-4
E11 (GPa) 132.4 81.3
E22 (GPa) 0.8 81.3
E33 (GPa) 10.8 64.5
G23 (GPa) 3.6 25.6

Elastic properties G13 (GPa) 5.6 25.6
G12 (GPa) 5.6 30.6
ν 12 0.24 0.33
ν 13 0.24 0.43
ν 23 0.49 0.43
d31 0 –122

Piezoelectric coeff icients d32 0 –122
(10-12 m/V) d 24 0 495

d15 0 495
ε11/ ε o 3.5 1475

Electric permittivity ε 22/ ε o 3.0 1475
ε 33/ ε o 3.0 1300

Mass density ρ(kg/m3) 1578 7600
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Figure 3.—Increase in the first mode damping of a [04/904]s T300/934 beam for various resistance
   values

R Impact
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Figure 2.—[04/904]s T300/934 cantilever beam with attached PZT-4 resistor patch. Side and top views.
   Dimensions in mm.
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Figure 4.—Effect of resistance on the first modal frequency of [04/904]s T300/934 beam. 
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Figure 5.—Fundamental modal damping and frequency using various mesh densities for a [p/0/90/90/0/p]
   Graphite/Epoxy square plate with PZT-4 layers connected to distributed specific resistance r.  
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Figure 6.—Predicted damping and frequencies of  the  first 4 modes of a Graphite/Epoxy square plate with
   PZT-4 layers connected to distributed specific resistance r.
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Figure 7.—Cylindrical [p/0/90/90/0/p] Graphite/Epoxy, PZT-4 quarter panel.
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Figure 8.—Predicted damping and frequency of first frequency mode (3,1) using various mesh densities
   for the [p/0/90/90/0/p] Graphite/Epoxy cylindrical quarter panel (Fig. 7) with distributed specific re-
   sistance r connected to each PZT-4 layer.
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Figure 9.—Predicted damping and frequency of mode (1,1) using various mesh densities for
   the [p/0/90/90/0/p] Graphite/Epoxy cylindrical quarter panel (Fig. 7) with distributed specific
   resistance r connected to each PZT-4 layer.
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Figure 10.—Damping of various mode shapes for the [p/0/90/90/0/p] Graphite/Epoxy cylindrical
   quarter panel (Fig. 7) with distributed specific resistance r connected to each PZT-4 layer.
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Figure 11.—Cylindrical  [0/90/45/-45]s Gr/Epoxy panel
   with symmetrically attached resistively shunted
   curved PZT-4 patches (shown as shaded areas) on
   both sides.
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Figure 12.—Damping predictions for the first 5 modes of the cantilever cylindrical  [0/90/45/-45]s
   Gr/Epoxy panel.
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